航空雷达大都安装在机头的前方,也称为“鼻锥罩”。战斗机雷达罩的功能首先是保证雷达不受气流冲击、压力影响,保持雷达舱的温度和压力恒定。另外要通过结构和外形设计,保证雷达波的高透过性,严格控制波瓣畸变和失真。雷达性能取决于设计时的功率和技术水平,而雷达罩的设计水平和技术指标可明显影响雷达的实际性能。中国军工技术和航空科研发展很快,先进战斗机更新换代的周期越来越短。
在黑色机头的歼-10/11刚被大家认识后不久,采用浅色雷达罩并取消机头空速管的歼-10B和JF-17又开始出现。而在歼-10B出现后不久就传出了应用AESA(有源相控阵)雷达的飞机只能采用没有机头空速管的、还得是浅色的天线罩的观点。这个观点虽然到现在还没有确定的来源和依据,但已被网络上的军迷所广泛接受。本篇只是根据国外型号和国内有关技术发展,通过实例对这个观点的根据进行对照分析,以此说明AESA与空速管和天线罩颜色并无直接联系。
雷达罩颜色受什么影响
雷达罩颜色与机体涂装有关。军机涂装有识别和隐蔽两个目的。从历史上看,作战飞机涂装经过了几个阶段。一战时的涂装以识别为主要目的,这个时期的飞机涂装带有鲜明的个人色彩,往往涂成飞行员喜欢的颜色,虽然有靠涂装分辨敌我和部队符号的目的,但飞机的外表仍显得杂乱无规律。航空兵在二战期间已经成为重要作战力量,飞机涂装也开始重点考虑战场上的隐蔽性,接近天空背景的灰色调开始应用。但陆基飞机相对更偏重地面隐蔽性好的绿色,大战中、后期开始出现深/浅灰、蓝/灰与绿色调的迷彩伪装色。喷气战斗机出现后很快就进入超音速阶段,核武器也在同时期引发了全面战争的预想。于是能有效反射光辐射,又有低阻力、低重量优点的原铝蒙皮得到广泛应用,铝蒙皮强反光问题在核战争环境下也可以接受。
越战期间亚洲和欧洲地面战场的航空兵,对超视距空战的神化降低了对目视隐蔽的重视程度,战斗机大都选择了下浅上深的双色伪装涂装,很多战斗机应用了色彩差异明显的绿色。战争经验促进了第三代战斗机的发展,而强调空优和格斗空战性能的三代机,普遍选择了有利于目视隐蔽的低可视涂装。雷达罩作为飞机面敌的机体前端,必须降低色彩对比度,浅色调雷达罩开始广泛应用。
按照上世纪70-80年代进行的色彩伪装技术研究,活动于昼间的飞机适合采用浅灰色,夜间采用深灰色则有更好的隐蔽性。除非在无月、无光污染的纯黑夜色条件下,黑色都不是色彩伪装的好主意。根据演习和测试中所取得的数据,同距离昼间目视空战中,黑色要比红色更容易进行目标视觉识别。美国战斗机在越战期间采用过深色丛林涂装,雷达天线罩以黑色为主,实战证明深色外表并不适合在空战中使用。西方国家在80年代进行的战斗机空战训练中,黑色雷达罩是迎头识别的重要标志,发动机拉烟的黑色带则是侧向识别的主要标志。正是因为识别效果好,黑色数字和条、带已经成为航空标准识别色。
美国在作战飞机色彩隐蔽性研究方面投入最大。根据美国航空兵装备技术研究的结果,活动于中、低空的战术飞机适合采用浅灰色,活动于中、高空的飞机上表面可用偏深的灰色以削弱反光,高空侦察机可以采用纯黑色以便利用太空背景隐蔽。美国空军广泛应用的浅色调战斗机涂装,大都是根据所处地区的具体条件,分别选择2-3种不同色度的灰色组合,通过圆滑连接的色块破坏飞机的轮廓,雷达罩则与机体同色。苏联空军早期战斗机采用了绿色雷达罩,但前线战斗机为增加隐蔽性也很快开始采用灰或白色雷达罩,空优战斗机也是按照上深下浅的碎块迷彩,或上灰下蓝的双色涂装,雷达罩则采用环境适应性好的深灰或月白色。俄罗斯最初出口的苏-27SK采用了上深下浅的一体化双色涂装,深灰色增强全天候隐蔽性并降低太阳反光,下方的浅灰用以降低与背景的对比度。
雷达罩的性能主要来源于透波结构的电学性能。电学性能则取决于材料类型,工作频率、实际厚度和材料、涂层性能。雷达罩的材料大都选择玻璃纤维夹层结构,也有采用成本很高但电学性能更好的石英纤维。纤维材料和叠层结构在雷达罩外表很难分辨。事实上,雷达罩颜色大都直接体现纤维和树脂黄、褐等基色,在雷达罩基体底漆的外层再由内到外进行聚酰胺底漆+抗雨蚀涂料+抗静电涂层的施工。抗静电涂层在最外面,雷达罩伪装色就由它决定。
飞机飞行时摩擦产生的静电如果附着在天线罩上,会明显干扰机载雷达的工作。抗静电涂层是在涂层基材中加入导电粉末,分为树脂型和橡胶型两个主要类别。树脂类是硬式涂层,断裂延长率低,硬度高,抗紫外线性能好,不变色。橡胶类涂层则是弹性涂层,断裂延伸率高,硬度低,抗紫外线性能较差,容易变色。经过耐久性测试,树脂涂层迎风面尤其是在起降时容易受沙尘影响的部分磨损较明显,橡胶涂层的磨损相对要低。早期机载雷达树脂材料硬式涂层的耐用性差,软性涂层则已实现了从氯丁橡胶向氟橡胶的进步。国外主要采用黑色氯丁橡胶、黑色弹性聚氨脂和黑、白色氟橡胶,材料透波率在93.4-98.8%,涂层的理论寿命在24-36个月。抗静电涂层最初采用石墨作为导电材料,但用石墨作为添料只能生产黑色涂层,颜色选择范围大的金属氧化物导电粉末已在国外广泛应用。无论天线罩的基体和底漆是什么颜色,最终决定天线罩颜色的是抗静电涂层,而添加粉末材料的抗静电涂层恰恰不是透明的。
根据公开资料的数据,国内有关企业在上世纪80年代研制成功了首代黑色弹性抗静电涂层。上世纪末先后生产的国产作战飞机,大都采用了纯黑色雷达罩的颜色标准,主要就是受到首代软性抗静电涂层色标的影响。中国航空兵也很重视低视觉涂装的战术价值,如引进的苏-27采用了铅灰色涂装,歼-10则选择了与西方战斗机相似的浅灰色涂装。但这些型号都采用了纯黑色的雷达天线罩,使天线罩与机身形成明显色差,浅色低视觉涂装的歼-10雷达罩的色彩差异则更明显。根据公开资料记载,这个期间雷达罩的颜色选择,完全是受到涂层技术限制的结果。
国内化工企业在90年代开发出首代浅色抗静电涂层,但当时的涂层虽然满足了低视觉颜色的要求,却存在耐热性等指标差的缺陷,与弹性底漆和抗雨蚀涂层的结合性能也不理想,除部分应用于测试和技术研究外,难以实际应用到批生产的雷达罩工艺中。新一代浅色弹性抗静电涂层开发成功后,开始在多个机型雷达罩中应用。
通过上述介绍,可以认识到雷达罩颜色与雷达类型完全没有关系,更不存在什么AESA用灰色雷达罩,平板缝隙用黑色雷达罩的“标准”。可以说得上区别的也许是在只有黑色抗静电涂层时,国内可实用的只有平板缝隙天线雷达。不同时期不同雷达罩颜色与雷达类型的对应,只是推出时间接近造成的偶然。
空速管的分类和技术特点
飞机空速管是种重要的大气数据传感器,用来精确测量飞行时的大气总压和静压,转换成飞行控制需要的飞行速度、升降速度和大气压力数据。空速管在使用中要受到气流干扰,空速管的长度越大,前端测压口与机体的距离越远,测量的静压就越接近大气真实静压。根据测量精度的要求,空速管的最佳安装位置是在与机身轴线相同的机头前方。大长度空速管的刚度要求较高。当现代战斗机开始在机头广泛装备机载雷达后,复合材料制造的天线罩刚度显然不如金属机体结构,容易因为基座弹性结构变形影响到空速管的测量效果。较长的空速管还会影响飞行员的前向视野。
采用机头进气方式的歼-6/7的空速管安装在机头下,可以设置相当长的探杆,缺点是结构重量过大,对地面活动的影响也比较多。后期的歼-7将空速管缩短后移到机头侧面,歼-8Ⅱ和歼轰7则采用较短的机头锥空速管,引进的苏-27和歼-10也采用雷达罩前空速管,并利用安装位置优势缩短空速管长度。
传统的空速管是物理测压的气动补偿空速管。按照不同速度下补偿曲线的范围,以及美军标准的规定精度,机头气动补偿空速管的长度应为机头直径的0.5-1,可见机头空速管的长度并不能随便选择。补偿空速管的设计相对比较简单,但位置和尺寸限制比较严格,这就促成了计算空速管的技术发展。补偿空速管靠气动补偿来保证测量精度,计算空速管则是在确定空速管的位置和尺寸后,通过风洞测试和试飞所取得的数据,测量出静压源误差与速度、攻角、侧滑角的关系曲线,通过大气数据计算机的程序以测量曲线为依据,对空速管测量的静压数据进行补偿和修正。计算补偿方式虽然不能消除静压测量值,却可以通过计算补偿方式将误差影响降到安全范围内。气动补偿空速管主要依靠测量元件保证精度,计算补偿空速管则需要大气数据计算机的支持。但计算补偿方式使空速管的安装位置更灵活,更利于飞机雷达电子和座舱目视的设计协调。
国外战斗机在70年代开始采用机身静压管设计方式。通过利用大气数据计算机和计算空速管,取消机头雷达罩位置前伸的气动补偿空速管,在雷达罩后机头周边位置设置L形静压管,并用对称设置多支小型静压管的方式,保证在复杂飞行状态下对空速的测量精度。空速管直到现在仍然是飞机空速测量的重要手段,即使F-22A这样尽可能减少机体外表突出设备的机型,仍然要在机头两侧安装空速管。从航空技术现状看,短期内空速管的功能仍然不受影响,现代战斗机对空速管的选择,还是集中在装在什么地方和采用什么方式。
气动补偿空速管直接测量自然静压,安装位置受限,尺寸较大却有较高的精度,远离机体的阶梯形管体还可与测角和测偏装置综合。计算空速管轻便,安装位置也灵活,却需要数据支持。所以,新飞机的原型机在飞气动数据的早期阶段,都安装精度高的常规气动补偿空速管。只有获得充足准确的气动数据和修正系数后,才可用于支持大气数据计算机的修正程序,计算补偿空速管才能取代气动补偿空速管。这就是ATF/JSF这样技术先进的样机开始试飞时都在头上顶个“避雷针”的原因。
近年来国内网络上流传着一个观点,就是通过观察是否有机头空速管作为分辨飞机是否安装AESA雷达的依据,进而认为雷达罩没有前方空速管就是先进。空速管与其内部的测量元件和导线都是金属材料,当空速管设置在雷达天线罩前方时,金属结构必然会影响到雷达系统的正常工作。取消空速管能消除雷达前方的不透波结构,确实有利于改善雷达工作环境,但把空速管与有无AESA联系起来真是很牵强。
雷达罩金属遮挡问题
机头空速管的优点是测量精度比机身空速管高,大气数据计算机的误差修正精度较容易保证。至于影响雷达工作的问题,无论是最早的圆锥扫描和单脉冲雷达,还是现在主力的平板缝隙PD雷达,再到最先进的AESA相控阵天线,机头空速管所产生的影响和问题都是一样的,对不同类型的雷达工作并没什么差异性的影响,自然也不存在AESA就不能有机头空速管的要求。
用实际例子为依据。先不说在70年代的F-15就已经取消了雷达罩空速管,国内出口的JF-17也没有安装机头空速管,而这两个型号的机载雷达都是平板缝隙天线。日本F-2战斗机采用的就是AESA雷达,但仍然保持了与F-16相同的机头空速管。美国为F-16开发的两种改装用AESA雷达,改造中也并不要求取消原有的机头空速管。苏联/俄罗斯为米格-29、苏-27系列开发的相控阵雷达,虽然并不是采用AESA天线,但这些型号也保留了机头空速管。通过不同国家的例子,可以证明AESA与机头空速管并没有直接关系。
空速管确实是雷达天线前方的不透波结构,但现代飞机雷达罩上并不仅有这个金属部件。飞机在飞行时会遇到各种气候条件,以金属为主要材料的飞行器等于是个高空避雷针。即使在飞行时适当选择航线和高度层,在恶劣气候下超音速飞行时雷击危险性也相当大。不导电的雷达罩如果没有放电措施,很容易在受到雷击时破坏结构和内部雷达系统。现代战斗机雷达罩表面大都安装防雷击分流条,区别只是安装位置和结构形式不同,目的是通过与机体连接的金属导体,将击中雷达罩位置的雷电导通到机体后释放掉,避免雷击对雷达造成破坏。常用的雷达罩防雷击分流条有金属箔条、金属带和纽扣式三种。
金属箔条重量轻、安装方式简单,空气动力性能出色。但金属箔条在遭到雷击时会迅速加温,截面小的箔条在高温中会融化蒸发,仅能作为一次性使用的防护措施。金属带的导电性能高,但截面尺寸较大,所产生的气动阻力和重量影响也大,而且整体金属带与复合材料雷达罩的热膨胀系数差异较大,使用中容易出现结构分离,影响结构完整性,并破坏抗雷击的导电和保护效果。纽扣式导电条则是金属条的适应性发展物。纽扣式导电条的尺寸和安装位置与金属条相似,结构上是大量很薄的小圆铝片连续安装在基带上。它能按照雷达罩的曲线固定在雷达罩外表,点式金属片与雷达罩的连接比较牢固,不易受材料热膨胀系数差异的影响。短间距的铝片重量比金属带要轻,也能获得相当于金属片的电导性能,是目前各型飞机雷达罩防雷设施的主要形式。
按照技术要求,无论什么类型的防雷击分流条,顺气流方向安装的分流条的前端,必须超过雷达天线扫描包络面的前方。采用平板缝隙旋转天线的战斗机,防雷击分流条的长度大都在天线罩轴向2/3左右,因为机扫雷达的天线需要全向旋转,天线用支架安装在机头背板,分流条必须覆盖雷达天线旋转所要运动的范围。F-22A采用的AESA雷达虽然不需要旋转,但为保证雷达天线的雷击安全性,防雷击分流条整体横穿过折边位置的天线罩前端。
无空速管雷达天线罩的优势
雷达波在扫描到天线罩上的金属结构时,金属反射的雷达波会严重干扰雷达工作,解决措施则是在雷达罩内层金属部件影响区,敷设雷达吸波材料以避免金属的信号反射。按照正常的雷达天线罩工艺方法,以雷达波长作为技术标准,采用泡沫结构的雷达吸波材料遮挡金属部件,使照射到金属部件位置的雷达波束被消耗掉,尽可能不被金属件反射回雷达天线。无论是机械扫描还是电扫描雷达,空速管和雷击分流条都处于雷达扫描范围内,金属部件的信号反射处理手段也大体相同,都是采用吸收消耗的方式削减雷达罩内反射信号。
防雷击分流条的作用目前无可替代,无论采用什么雷达都不可能取消这个结构,技术措施也没什么特殊的。雷达罩空速管在几十年前就被机身静压管取代,近年来新设计生产的作战飞机,大都已不在雷达罩中心点安装空速管。
取消空速管的首个优点是降低了结构设计难度。金属空速管的基座是非金属的天线罩,飞行时空速管受到压力和弯矩影响时,刚性管体的应力会传到天线罩上,对基座的位置精度和受力不利,对高机动性战斗机的影响更明显。机头空速管对雷达罩尖端连接位置的材料强度要求很高,不利于根据雷达技术合理化设计雷达罩的结构。雷达罩的强度要求和结构重量都比较大,机头静压管维护还必须打开雷达罩进行,对生产工艺要求高,维护涉及范围也较大。
机头空速管的测量精度确实很高,但为满足数据测量装置备份的要求,即使设置机头空速管的战斗机,往往也在机身位置安装有辅助功能的短L静压管。采用补偿式空速管时,空速管安装位置没什么选择余地。但在采用大气数据计算机修正的计算空速管后,将主数据空速管由机头位置移动到机身,等于增加了机身L静压管的测量精度要求,却没增加静压管的数量和管道系统,静压管的制造和维护保养都更简化。
取消机头空速管后的雷达罩结构设计更加自由,能按照雷达信号的有利特点确定雷达罩的层数、罩体厚度、铺叠方式和纤维方向,获得结构强度与重量和电性能平衡的有利结构。雷达罩虽然在设计时会考虑工艺问题,但在制造完成后必然会存在电性能的起伏。因为雷达罩玻璃钢材料缠绕后树脂固化的厚度无法保证高度一致,厚度差异对雷达波束一致性有影响。目前普遍采用测量制成件毛坯的电性能后,通过人工或机械磨削方式修正超差来保持电性能的一致性,以避免波束畸变。没有机头空速管就可以简化雷达罩的结构,使设计更合理,还能改善加工质量,简化后期参数调整工艺,增强雷达罩对雷达性能的支持。
雷达罩采用绝缘非金属材料整体成型,无论是采用真空袋模压、常压袋模压、高压釜模压成型或树脂传递模塑法,都必须在固化前首先完成纤维缠绕这个基本工序。现有加工工序大都采用模具缠绕加丝工艺,雷达罩内模在两端支撑的支持下旋转运动加丝,在完成缠绕后必然会在两端留出工艺开口。雷达罩尾段大端面用来与机体前部框架连接,雷达罩尖端存在的工艺孔原本用来安装空速管,取消空速管的雷达罩则需要采用独立部件封堵。如果仔细分辨现有战斗机的雷达罩外形,可以发现无空速管的雷达罩前端尖点位置,大都有个颜色不同的小型尖锥形填充物。这个部件的存在是为了封堵绕丝模具的工艺孔,改善纤维缠绕的工艺性和降低技术难度,同时也是用整体成型锥体改善雷达罩的强度,部分封堵用材料甚至直接选择金属件以增强强度。这种工艺与空速管的遮挡效果接近,与雷达工作之间并没有无法解决的矛盾。F-15在70年代设计时就采用无空速管的雷达罩,这个时候并不存在可用于战斗机的AESA雷达,F-15当时也没有应用AESA雷达的规划,类似的例子还有EF-2000,可见雷达罩有没有空速管与AESA没有关系。现代雷达罩铺叠和成形技术发展很快,不再必须设置模具前端的工艺孔。但从已有雷达罩的工艺技术尤其是国外战斗机改装AESA雷达的样例看,取消雷达罩空速管就是为了改善雷达罩结构性能,而不是为了AESA专门采用的措施。
总的讲,电扫和机扫天线的电性能要求并无大的差异,都是按传输效率、瞄准误差和方向图畸变确定参数。功率反射则需要考虑到雷达罩设计、材料和附件的诸多因素。无论采用什么类型雷达和天线罩材料,雷达系统对天线罩的颜色都没有什么要求,非金属外壳上金属部件虽然是越少越好,但也没到哪个位置不能有什么的严格程度。(作者署名:空军之翼 原载于兵器知识)
本栏目所有文章目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。凡本网注明版权所有的作品,版权均属于新浪网,凡署名作者的,版权则属原作者或出版人所有,未经本网或作者授权不得转载、摘编或利用其它方式使用上述作品。
新浪军事:最多军迷首选的军事门户!
已收藏!
您可通过新浪首页(www.sina.com.cn)顶部 “我的收藏”, 查看所有收藏过的文章。
知道了