新浪军事编者:为了更好的为读者呈现多样军事内容,满足读者不同阅读需求,共同探讨国内国际战略动态,新浪军事独家推出《深度军情》版块,深度解读军事新闻背后的隐藏态势,立体呈现中国面临的复杂军事战略环境,欢迎关注。
问:很多网友指出,运-20的气动外形和机翼与伊尔-76很像,能否分析一下两者机翼的设计特点,以及它们之间有什么区别?
答(傅前哨):通过照片观察,运-20与伊尔-76的外观差异还是比较大的。第一,伊尔-76采用多乘员驾驶体制,在机头处布置有领航舱,其前方和下部分别安装了气象雷达、地形测绘雷达等设备,外形显得不够光顺。运-20安装有先进的航电系统和导航定位系统,机组人员相对较少,且不设领航舱,其机头干净、简洁,阻力也较小。第二,运-20选择的T形尾翼的构形不同于伊尔-76,比伊尔-76的垂直尾翼要细高一些,看上去更接近美国C-17、西欧A400M运输机。第三,运-20的方向舵分为上下两段,左右升降舵分为内外两段,而伊尔-76的方向舵和升降舵都是整体的一块。第四,伊尔-76的垂尾装有顶锥,平尾安定面和升降舵均位于垂尾安定面的上方,而运-20的垂直尾翼上没有顶锥,其水平尾翼安定面和升降舵的位置较为靠后。第五,运-20的机身比伊尔-76要粗,可载运更宽、更高的货物。第六,运-20的主起落架以及起落架舱的设计与伊尔-76完全不同。
当然,运-20与伊尔-76之间也有相似之处。从平面形状看,运-20的机翼与伊尔-76就比较像(与C-17不一样)。比如说,它们都选择了位于机身之上的大展弦比、中等后掠角主翼,机翼的前缘后掠角恒定(1/4弦线后掠角大约在24-26度左右),机翼后缘采用两种后掠方式——中外翼段的后缘后掠角要大一些,而内翼段的后掠角明显减小。这样设计的好处是,既能保证机翼根部有较宽的弦长和面积,以改善其承力状况,提高内翼段和中央翼的结构强度,又能保证机翼有较大的展弦比,以改善全机的升阻特性,提高巡航飞行时的经济性。另外,运-20与伊尔-76的主翼前缘均设有全展向的多段前缘缝翼,并在内翼段和中翼段的后缘安装了两套后退式三开缝襟翼,机翼外侧的后缘则布置副翼。它们的襟翼系统增升效果良好,有助于缩短起降滑跑距离。
不过,尽管二者的模样很像,但若仔细分析一下,便不难发现,它们在细节上仍存在许多不同的地方。运-20内翼段的后缘后掠角比伊尔-76略大一些,中外翼段的后掠角又稍小一点。如果它们的翼展长度相当的话,那么,运-20的机翼面积和飞行中的总升力就会大一些,这对提高运输机的承载能力、改善起降性能都是有好处的。
再有,伊尔-76在左右机翼的上表面各设有8块用于增阻和控制姿态的扰流板(总共16片),C-17在每侧机翼上分别安装了4段面积较大的扰流片(总共8块)。而从运-20着陆过程的录像看,该机每副机翼似乎配备了6个大型的扰流板(接地前和滑跑时相继打开)。
运-20与新型的伊尔-76MD-90A(伊尔-476)在机翼上的另一个差别是襟翼作动筒的数量不同。伊尔-76MD-90A每侧机翼的襟翼作动筒和整流罩为7套(内襟翼4个、外襟翼3个)。而运-20单侧的襟翼作动机构只有6套(每副襟翼各3个)。少一套作动机构和整流装置,有助于简化飞机的液压/电气系统、减轻内部结构重量、减小机翼的外形阻力。
问:有媒体报道说,运-20采用了先进的“超临界翼型”,能简单解释一下这种机翼的特点吗?
答:翼型,也称翼剖面,对飞机的升阻特性影响很大。目前飞机上常用的机翼翼型主要有凹凸、平凸、双凸、对称等基本形状,超临界翼型属于双凸翼型中的一种。
飞机是靠气流流经机翼,在其上下表面间形成速度差(从而导致压力差)来产生升力的。当飞机处于中小迎角状态时,在相同的时间里气流绕过机翼上表面所走的路程比流经下翼面的距离长,由此造成机翼上表面的气流速度比下翼面的快。而流速与静压是成反比的,流速高,压力小;流速低,压力大。于是,便在上下翼面之间产生了压力差。
在飞机的运动速度和迎角相同的情况下,翼型越厚,上表面凸起越多,上下翼面间的压差就越大,升力也就越高。向前飞行时,相对于来流速度,翼面上的局部流速明显加快。当飞机的速度进入M数0.85~0.9的高亚音速区域,翼面流场的速度将率先达到音速(M数1)。
此时的飞行M数被称为“临界马赫数”。若飞机继续增速,机翼表面便会出现局部激波,从而引发激波阻力,导致全机阻力系数陡升。为了保证良好的经济性,一般的客机、运输机的飞行速度不宜超过临界M数(临界马赫数)。
如果想在维持较高升阻比的前提下,进一步向上扩展有利飞行速度区间,就必须设法提高机翼的临界M数。减小翼型厚度、增大机翼前缘后掠角等,均是有效的措施。但无论是薄翼型还是后掠翼都存在着升力系数低、结构强度差等问题。
超临界翼型的设想是NASA(美国国家航空航天局)的著名科学家理查德·惠特科姆博士于1967年提出的。这种翼型厚度较大,前缘圆滑,上翼面中部相对平坦,气流的加速过程趋缓,从而可推迟局部激波产生的时机(将临界M数提升至0.95左右),即使产生了激波,其强度也比较弱。这种特殊的厚翼型不但能提高飞机的最大经济速度,还具有机翼内部容积大、结构重量轻等优点。
不过,翼型上表面平坦,气流增速较慢,也有不利之处,上下翼面间的速度差和压力差比较小(意味着升力偏低)。要想改善它的气动特性,必须想办法降低翼型下表面的相对流速。为此,研究人员对其进行了局部修形,让下翼面在接近后缘处的地方向内凹入,使后缘变薄,且向下弯曲(形状有点像蝌蚪)。这样调整之后,可明显减小下表面的气流速度,从而增大翼型后端区域的上下压差(称为后部加载)。如此一来,超临界翼型的升阻特性就比较理想了。
一般而言,超临界翼型的临界M数比较高,采用此类翼型的机翼便可以将后掠角设计得小一点。在翼展相同的情况下,这有助于进一步减轻机翼的结构重量,提高其巡航升阻比,改善亚音速和高亚音速飞行时的经济效益。
超临界翼型不是一种,而是一族,以适应不同飞机的使用要求。各航空大国都对这种特殊的翼剖面进行过系统研究,且设计细节和获得的翼型参数是相互保密的。我国经过多年的探索,在超临界翼型的研究方面已取得了一大批成果,已有多款国产飞机选择了此类翼型。我国20世纪70年代初研制运-10客机时,就成功地运用了超临界翼型技术,从而使运-10的许多飞行性能胜过了波音707。由此类推,如果运-20也采用新开发的超临界翼型,那么在气动性能上,该机应明显超越伊尔-76,与同样选择超临界翼型的C-17基本相当。
问:为什么C-17的机翼作动筒较少,机翼也更简洁?
答:运-20机翼下表面的襟翼作动机构及其整流罩虽比伊尔-76MD-90A少一套,但比C-17多两个。这是三者间的差异之一。其二,运-20所配备的滑退式三开缝襟翼的复杂程度显然要高于C-17采用的吹气式襟翼。第三,运-20的襟翼偏转角度也明显大干C-17。
三开缝襟翼是一种气动效率非常高的增升装置。它由多块附着在机翼后缘的可动翼片组成,平时收拢在机翼后缘处与机翼合为一体,只有在飞机处于起飞、着陆阶段或某些需要低速飞行的情况下,它们才转为滑退、偏转状态。使用时,三开缝襟翼沿下翼面安装的滑轨后退,同时下偏。这种襟翼放下、伸展后,不但可以改变机翼的剖面形状,加大翼型弯度,提高上下翼面间的速度差和压力差,还能利用依次滑退的活动翼片扩展机翼的面积,增升效果非常显著。
如果三开缝襟翼完全推展开来,便会在其翼面上形成三条横向的缝隙,通过这些缝隙把一部分压力较高的气流从机翼/襟翼的下表面引导至襟翼的上表面,将可大大增加上表面的流速,并利用气流的附壁效应(科安达效应),改善襟翼背风区的流场,使紊乱的分离流重新变为附体流(紧贴在翼面上)。从吹风试验和试飞的结果看,这种先进襟翼系统的总体增升效果要比普通的简单式襟翼、开裂式襟翼、单开缝襟翼更好,可使全机的升力系数提高1.5倍左右(未扣除配平损失)。许多现代化的民航客机都采用了类似的襟翼增升装置。
当然,由于三开缝襟翼有多个相互独立的活动翼面,滑退、偏转机构较为复杂,展开后的襟翼面积和下弯角度很大,用于增升时它们所负担的举力和力矩自然也就比较高,因此需要一套复杂的由控制系统、作动装置、承力结构、导向滑轨、传感器等组成的机构来运转。翼型很薄的轻小型飞机难以应用这项技术,只有机翼相对较厚的大中型飞机才适合安装三开缝襟翼。
C-17的钛合金外吹式襟翼也颇有特色。起飞和着陆时,利用发动机的喷流外吹在双开缝襟翼上,可产生较强的动力增升效果,从而大大降低飞机的起降速度,缩短滑跑距离(当然,运-20的襟翼也会受到发动机喷流的影响)。与滑退式的三开缝襟翼相比,这种固定式的双开缝襟翼绕轴放下时的偏转量较小,行程和力臂较短,受力情况较好,因此可适当地减少动作筒的数量,每块襟翼使用两套作动装置就够了。
问:C-17、A400M的机翼有翼梢小翼,可以省油,中国商飞的C-919也采用此设计,为什么运-20没采用?
答:“翼梢小翼”的最初发明者也是理查德·惠特科姆博士,但最早应用这项技术的却是欧洲国家。为此,惠特科姆还曾与多个欧洲航空公司和飞机制造企业打官司。结果,持有该项专利技术的惠特科姆却输了。为什么?因为人家受其专利思想的启发,在“惠特科姆小翼”技术的基础上进行了大量的研究和改良试验,装在欧洲飞机上的翼尖小翼的构形与“惠特科姆小翼”已有很大的区别,因此,不好说别人是抄袭。
目前,欧洲空中客车公司研制的几乎所有的大中型民用飞机,如A300、A310、A318、A219、A320、A321、A330、A340等,均采用了不同类型的翼梢小翼,并取得了良好的经济效益。美国的波音、洛克希德·马丁等公司应用该项技术的时间相对较晚,波音757、767、777、MD-90、MD-95/波音717等方案在设计时均未考虑安装这种装置。波音747-400大型客机是波音公司产品中最早采用翼梢小翼的改进型飞机,设计人员为其增设了一个1.83米高的小翼。老款的波音737-100/200/300等型别未配翼梢小翼,较新的改进型如波音737-500/600/700也没装,直到最新的生产型波音737-800才采用了翼梢小翼方案。作为波音公司的军用拳头产品,C-17倒是在设计初期就采用这种新型设计,选择了NASA为其开发的高2.9米的小翼。
翼梢小翼的作用正如网友所言,可以省油。那么,它又是如何达成节能减排指标的?从原理上讲,这种气动装置是通过阻挡和分散翼尖涡的方式,削弱这一有害能量的影响,从而给机翼增升减阻,最终实现降低油耗、加大航程和航时之目的。前面提到,飞机主要靠气流在机翼上表面与下翼面间产生速度差、压力差来产生升力。在机翼翼尖的区域,由于下翼面的压力高于上表面,底部气流有向上翻卷、进行压力交换的趋势,并最终形成翼尖涡。这股涡流会给飞机带来不利的干扰——使翼尖的升力减小,阻力增加(称为翼尖诱导阻力或升致阻力),从而导致全机升阻比降低。为此,发动机必须付出更多的能量才能维持飞机的飞行,巡航经济性也随之变差。
怎样才能减少翼尖涡的有害影响呢?措施之一是加大机翼翼展,尽量缩小翼尖涡对机翼的干扰范围。但增大翼展又会引发结构强度、刚度、重量等一系列问题。办法之二是对翼尖进行修形,如采用椭圆翼尖、低阻翼尖等方案,但这些措施的效果有限。对策之三便是安装翼尖端板、翼尖帆片、翼梢小翼等气动装置。它们一般垂直、倾斜或水平布设在翼尖处,用以阻挡和分散翼尖涡,以降低其对机翼的不利影响。
试验数据表明,“全封闭”式翼尖端板的气动效益不如翼梢小翼好,因为它在减少诱导阻力的同时,本身也会产生一定的磨擦阻力和干扰阻力,对改善全机升阻特性的贡献不大(除非把它当做“翼稍立尾”使用)。而装在翼尖较为靠后位置上的翼梢小翼可使全机的升阻比提高1%-15%。当然,加装翼梢小翼后也会带来一些新问题:一是小翼本身有一定的重量,二是它们产生的气动力将对翼根形成不小的弯矩。因此,机翼的强度、刚度等需要加强,结构重量也将增大。
翼梢小翼的降阻增升幅度视使用对象而异,存在着较大的差别。同类构形的翼梢小翼装在不同的机翼上,会产生不一样的效果。反之,特定的机翼配置不同的翼梢小翼也会得到不一样的结局。总体而言,翼稍弦长相对较短的大展弦比机翼从翼梢小翼身上获取的好处相对较少(升阻比约提高1%~5%):而翼稍相对较长的小展弦比机翼获得的收益比例则往往较大(升阻比可提高7%-15%)。
不过,看问题不能仅盯着局部,还要观察整体。采用大展弦比机翼的运输机、旅客机安装翼梢小翼后获利虽然只有百分之一二,但因其耗油量的绝对值很大,在经济上得到的好处还是相当可观的。轻型的米格-21MF战斗机以亚音速巡航飞行时,每千米约耗油2升,而大型的波音747-200B四发客机,飞行一千米平均耗油19.1升。若以每架波音747-200B平均每天飞行10000千米(每年飞300天)计,加装了翼梢小翼的波音747机队一年能省多少油?
新研制的大型飞机装不装翼梢小翼要根据具体情况而定,采用什么样的翼梢小翼,也需进行综合权衡。翼梢小翼的种类、款式,花样繁多,如英国人发明的翼尖帆片,中国人发明的翼尖涡轮、翼尖鸭式小翼,美国人发明的惠特科姆小翼、整体弯曲上翘小翼等。它们的实际使用效果、适配机型均不一样,吹风试验和理论计算时必须进行反复的对比和验证。这无形中会加大前期阶段的设计、试验工作量和开发费用,并影响研制进度。因此,运-20暂不采用翼梢小翼是有其道理的,这为下一步的改进、改型留下了空间。首先解决大型运输机的有无问题,然后再不断优化(例如修改气动外形、换装动力装置等)。
那么,同为中国大飞机项目的C-919客机方案为何又一次性地选用翼梢小翼呢?我认为这个选择也是正确的。客机研发部门优先考虑的也许是“取证”问题,因为民用客机在试飞成功之后还需要花费大量的资金、用较长的时间进行适航取证工作。只有在取得型号合格证、适航证之后,新型客机才允许投入国内、国际航线使用。若已经拿到了适航证,设计部门又对飞机的气动外形小改了一把(比如加装翼梢小翼),那么,就需要重新进行试飞取证,这在经济上、研制周期上都是很不合算的。其次,民用客机更重视耗油率、航程、航时等经济性指标,运营成本低的飞机有利于产品推广。因此,不如毕其功于一役,首飞时便安上此类气动装置。也许,这就是运-20和C-919在翼梢小翼问题上采取不同策略的原因。
问:美国的C-17、日本的C-2运输机为什么有尾鳍,而运-20没有?
答:位于后机身下方的这些固定安装的垂直翼面或倒v字形外张式翼片一般被称为腹鳍。许多作战飞机均设置有单腹鳍、双腹鳍或三双腹鳍。腹鳍的主要功能是用于提高飞机在低速大迎角飞行和超音速飞行时的方向安定性。许多运输机(如C-17、C-1、C-2、安-24、安-32、“新舟”60等)也安装了类似腹鳍的气动装置。
为了方便装卸货物,运输机的舱门和机身的离地高度往往都比较低,但机身过于低矮也会带来问题:起降时有可能因操纵不当而擦碰机尾腹部。防止擦尾的技术措施之一,是将后机身下方设计成向上弯折的形状。这种处理方式的流线型不够理想,在某些飞行迎角状态下,在机尾下方很容易形成一个“死水区”。前方来的气流进入这一区域后便会发生分离的现象,产生紊乱的涡流,从而造成飞机的“底阻”增大,安定性变差。
为了解决这一矛盾,在某些运输机的后机身下缘增设了腹鳍,以改善局部区域的流场。此类装置一般都选择垂直或外张式双腹鳍方案,且腹鳍的安装方式不是顺气流方向,而是沿着机尾收形的角度配置,即它们之间不是平行的,而是带有一定的夹角。有的运输机方案安装的两片腹鳍甚至在尾尖处相交。其目的是将后机身腹部的紊乱气流理顺、引走,从而改善机体下方的流场,降低飞机的底阻。
位于机尾的双腹鳍没有沿机体轴顺气流安装,而是与前方来流形成一定的夹角,这样设置会不会产生额外的迎风阻力呢?一般来讲不会。因为它们处于背风区,面对的不是飞机前方的高速来流,而是后机身腹部的速度较低的涡流。只要把这些乱流梳导、清理掉就OK了。
运-20原型机没有安装腹鳍,说明该机后机身的气动外形设计得比较流畅、光顺,气流的分离情况不严重。当然,最终还要看试飞的结果。若飞行测试的数据与风洞吹风的数据相一致,就维持原设计。如果遇到问题,再加装腹鳍也来得及。
问:从正面看,运-20上单机翼中部,完全在机身外,比较突兀,C-17比较自然,当然这会占用机身内空间,如何权衡?
答:为了方便人员上下飞机和装卸货物,军用运输机往往选择上单翼后尾式气动布局和较短的起落架(有些运输机的起落架还配备有升降机构),以降低机身与地面问的距离。而为了容纳较大尺寸的物品,大部分军用运输机的机身采用宽体结构,其横截面多呈圆形、蛋形、双圆形或矩形。
已收藏!
您可通过新浪首页(www.sina.com.cn)顶部 “我的收藏”, 查看所有收藏过的文章。
知道了