跳转到路径导航栏
跳转到正文内容

中国星超大型可变翼飞翼布局客机

http://www.sina.com.cn  2008年10月08日 17:12  新浪航空
中国星超大型可变翼飞翼布局客机
中国星超大型可变翼飞翼布局客机

中国星超大型可变翼飞翼布局客机
中国星超大型可变翼飞翼布局客机

中国星超大型可变翼飞翼布局客机
中国星超大型可变翼飞翼布局客机

中国星超大型可变翼飞翼布局客机
中国星超大型可变翼飞翼布局客机

  凌维安 王全平

  面对21世纪燃油价格日趋上涨,人们对环境保护的要求愈加严格。人们对民用航空的期望已经不仅仅局限于飞行更安全、速度更快、乘坐更舒适这样的对客机的基本要求。因此,人们会提出对客机的能源消耗以及污染气体和噪音的排放等关乎生态可持续发展更高层次的要求。

  为了迎合人们这种要求,同时面临着来自空客公司A380客机对民用航空市场的巨大冲击,波音公司提出了“翼身合一”(blended-wingbody,缩写BWB)的客机设计理念,并制作出了X-48试验验证机进行研究。但该验证机也暴露了诸如容易出现俯仰和偏航失速、操纵面设计和控制困难、各种控制系统高度非线性和高度耦合及结构承压高于传统布局客机等技术难题。

  立足于飞翼布局这一基本概念,针对波音公司X-48的不足,运用正在兴起的最新科技,我们设计了“中国星”超大型可变翼飞翼布局客机(下文简称“中国星”),为中国不远的未来超大型客机的发展做了探索性的设计研究。

  0.“中国星”概述

  “中国星”有效座位数为1000座级,巡航马赫数为0.88,最大航程为14000公里。飞机装有两台采用两台860千牛低功耗静音涡扇发动机。飞机为整体翼身融合,其中机翼采用了先进的“智能可变翼”技术,实现机翼在空间的多自由度变形。机身尾部也利用“智能可变翼”技术实现全动“智能全动襟翼”。此外“中国星”还采用了先进的控制和导航系统。

  1.“中国星”气动特性设计研究

  1.1“流线型翼身融合”整体设计

  众所周知,翼身融合技术已经在军用轰炸机中得到实现,其中最著名的是美国的B-2和F-117隐身轰炸机。客机中翼身融合技术在上世纪九十年代末美国也进行了研究。“中国星”采用翼身融合技术,包括机身总体为“后缘扩张翼型”,机体能直接提供升力。同时,“后缘扩张翼型”能明显减弱激波,增大升阻比。机体表面光滑平整,无平尾垂尾附加装置,大大减小了零升阻力。从而降低了飞机单位公里油耗。

  1.2“智能可变翼”技术

  为了兼顾飞机的高速巡航和低速飞行性能,“中国星”运用了“智能可变翼”技术(图1.1)。使得机翼能够在空间实现多自由度的变形。“智能可变翼”采用最新发展的压电材料为驱动器和传感器,可伸缩弹性硅树脂蒙皮,并用钛合金和刚材料网线加强。利用中央大规模计算机做中心控制。实现机翼在高速巡航和低速飞行下,翼展和翼尖小翼状态的变化。

  图1.1 “智能可变翼”技术

  同时,机翼表面能实现自适应鼓包,压电材料通过对外界气流的捕获,将信号传回中央计算机,在通过电流驱动,实现在当前气流状态下,最适合的气动形状,来获得最大升阻比。

  图1.2“中国星”低速飞行状态

  我们特别给出了飞机低速飞行状态和高速巡航状态(图1.2)(图1.3)。在低速飞行状态下,飞机展长可以达到125米,到了高速巡航状态下,为86米。当飞机为于机场候机状态时,也可以收起长翼展,增加机场空间。翼尖小翼也具有感知外界气流能力,从而做出最有利上反角,减小诱导阻力。

  图1.3“中国星”高速飞行状态

  特别要指出的是,“中国星”机身后部为“智能全动襟翼”(图1.4),能够提供一定的下弯角,从而在飞机起飞时,有效增加升力系数,使得“中国星”在起飞时的滑跑距离大大缩短。在高速飞行时,可以该回平面,减小废阻。由于“智能全动襟翼”是通过智能材料变形,没有传统襟翼的缝隙,因此对飞机的气动特性更加有利。同时“智能全动襟翼”还能够起到全动舵平面的作用,提供飞机的纵向稳定性。

  图1.4“智能全动襟翼”

  1.3“主动非线性涡升力”技术

  由于采用了“智能可变翼”技术,因此机翼的两侧前缘可以主动形成沟槽,使得气流从两侧前缘经过会产生脱体涡,这种涡可以为飞机提供额外的非线性升力。另外由于,表面压电传感器的捕获流场作用,又可以通过改变沟槽形状来获得,最满意的非线性升力,从而使飞机得到最满意的升阻比。

  2.“中国星”推进系统设计研究

  “中国星”装有两台860千牛低功耗静音涡扇发动机。具体利用下列最新技术实现。

  2.1变循环发动机技术

  两台发动机均为变循环发动机,其可通过改变发动机一些部件的几何形状或位置来改变其热力循环, 在各种飞行条件和工作状态下提供良好的性能。变循环发动机可自发改变涵道比, 在低速飞行时加大涵道比, 以降低耗油率。在高速飞行时减小涵道比, 以增大推力。

  2.2多电发动机技术

  “中国星”涡轮发动机上用主动磁浮轴承系统代替传统的滚动轴承系统,用安装在主轴上的大功率内置式整体起动/发电机为发动机和飞机提供所需要的电源, 用全电气化传动附件取代机械液压式传动附件,实现发动机和飞机的全电气化传动, 同时, 发动机的控制系统也由集中式全权限数字电子控制系统改为分布式控制系统, 发动机的燃油泵和作动器也改为电力驱动。多电发动机除为飞机提供飞行所需推力外, 还为飞机上的用电系统提供电力, 发动机上的机械、液压和气压系统均采用电力驱动,并且由于采用磁浮轴承而无需润滑系统。与传统的发动机相比, 多电发动机具有性能更好、结构更紧凑、运行和维护成本大大节省等许多优势。

  2.3智能发动机技术

  “中国星”发动机为智能发动机, 依靠传感器数据、专家模型以及它们之间的融合, 发动机全面了解环境和自身状态, 以作出最佳决策, 并采取物理动作执行这些决策。它能对发动机的性能和状态进行主动的自我管理, 并根据环境因素平衡任务要求, 从而提高性能、可靠性, 延长寿命, 降低使用和维修成本。

  2.4静音发动机技术

  “中国星”发动机进气道口由3块智能吸音材料板构成。智能吸引材料板可以向舵面一样实现偏转,以实现最佳的发动机口进气。吸音材料表面由打孔的金属板构成,在表面之下是一层蜂窝状中心的材料,最后是无孔背板。智能吸音材料可以通过主动检测发动机声波频率,通过压电材料驱动蜂窝结构的紧密程度,从而吸收特定频率的噪声。

  2.5“锯齿边”技术

  发动机喷口采用的是“锯齿边”(图2.1)。“锯齿边”能减少发动机噪声中的喷流噪声分量。由于喷流噪声是起飞过程中的重要噪声,因此,采用锯齿边能最有效地降低民用航班起飞过程中的噪声。

  图2.1“锯齿边”发动机

  2.6射流消声技术

  发动机内部运用了射流消声器技术,通过机械直接射出气流来,降低发动机内部空气和机械结构的摩擦,从而大大降低了发动机内部的噪声。

  3“中国星”结构设计研究

  3.1“智能可变翼”结构

  由于“中国星”的“智能可变机翼”需要实现空间多自由度变形,因此对于“智能可变翼”的结构具有严格要求。利用最新发展的压电材料为驱动器和传感器,可伸缩弹性硅树脂蒙皮,并用钛合金和钢材料网线加强,同时采用了滑动蒙皮技术,用记忆合金设计机翼内部的梁、肋和加强筋,通过合理布置梁、肋和加强筋实现机翼的多自由度变形。

  3.2飞行器结构健康监测系统

  “中国星”率先利用了现在正在研究的结构健康检测系统,该系统主要应用在整机疲劳寿命监测和重要结构的损伤监测两个方面。通过在全机布置压电材料传感器,能够对“中国星”结构实现在线检测并获知飞行载荷谱。通过中央计算机分析,前者可以对飞机的重要结构部分获得实时信息,从而对结构维护提供依据。后者则通过对飞行载荷谱的分析研究,对飞机疲劳失效情况的发生做出提前判断。从而保证飞机在空中飞行时发生结构瞬间疲劳解体的恶性事故。

  3.3飞行器结构自我修复系统

  “中国星”机体为百分之二十的钛合金与钢合金钢与百分之八十左右的复合材料构成。在复合材料中填充有环氧树脂和硬化剂的中空纤维。当这些纤维管束被嵌入飞机结构的任一部分中,如机身、机翼中,一旦这些部分受损,这些纤维管就会漏出来封住所有孔洞,就像伤口结痂。这些材料可以修复80%到90%的损伤,使飞机能够正常工作。通过往树脂中掺入染料还可以令修复的损伤部位显示为有色的补丁,这就有利于在之后的全面检修中被清楚发现。不过,这种染料在正常的灯光环境中是看不出来的,只能在紫外光下才可见。

  4.“中国星”控制系统设计研究

  4.1稳定性控制

  4.1.1纵向稳定性控制

  飞机的纵向稳定一方面由飞机的气动布局保证。由于飞机采用了“流线型翼身融合”整体设计,机体的侧视面也为一个机翼,因此很容易使得飞机焦点落在飞机重心之后。保证飞机纵向静稳定。另一方面,飞机采用的“智能全动襟翼”可以起到升降面的作用,从而保证飞机的纵向稳定性。此外,飞机还利用了先进的光传操纵系统。该系统通过感知飞机的姿态,对飞机起到增稳的作用,确保在各种条件下飞机纵向稳定,防止失速发生。

  4.1.2横向稳定性控制

  “智能机翼”在变形时,在两侧机翼上产生了翼稍小翼。翼稍小翼一方面可以减小诱导阻力,另一方面起又能起到垂尾的作用,可以保持飞机的横向稳定性。由于“智能机翼”可以根据操纵变形,因此可以为飞机的横航向稳定性提供增稳。另外,机翼有两个副翼,副翼的偏转可以作为飞机的航向控制。

  4.2“智能机翼”变形控制

  对于“智能机翼”的变形控制利用了最新发展的压电材料为驱动器和传感器,可伸缩弹性硅树脂蒙皮,并用钛合金和刚材料网线加强。图4.1给出的是机构变形的示意图,虽然给出的是二维图,但三维尺度上同样可以参考图4.1的机构设计。图中aj方向为展向。在c,d,g,i节点分别布置了压电材料的驱动器和传感器,就可以实现对机翼的变形控制。图4.2给出了“智能机翼”闭环控制的示意图,作动器和检测器为压电材料。箭头表示气流附着在机翼表

  图4.1“智能机翼”机构变形示意图

  面。只要运用人工智能技术,实施闭环控制技术,就能实现机翼像鸟一样伸展变形。

  图4.2 智能机翼”闭环控制示意图

  4.3“量子计算机”技术

  为了完成对“智能变形机翼”、“智能发动机”及飞机飞行状态的基本控制,“中国星”自身必须具备一颗强劲的心---一台高效能的中央处理系统。因此,“中国星”的中央控制系统采用了下一代计算机的代表--量子计算机。量子计算机与传统计算机原理不同,它是建立在量子力学的原理上工作的。经典粒子在某一时刻的空间位置只有一个,而量子客体则可以存在于空间的任何位置,具有波粒二象性,量子存储器可以以不同的概率同时存储0或1,具有量子叠加性。如果量子计算机的CPU中有n个量子比特,一次操作就可以同时处理2n个数据,而传统计算机一次只能处理一个数据。例如,具有5000个量子位的量子计算机,可以在30秒内解决传统超级计算机要100亿年才能解决的大数因子分解问题。“中国星”的运算能力可达1亿亿次/秒,是当今世界上运算能力最强的电脑——美国蓝色基因超级计算机的35倍。

  4.4“人工智能”技术

  为实现“中国星”自主飞行,“人工智能”技术将在“中国星”被充分利用。并且提出了“有人操纵、无人飞行”的概念。即由飞行员对应急情况进行处理,其余情况下由“中国星”自主实现起飞、巡航、盘旋和降落。“人工智能”技术还主要体现在“中国星”的“自主学习”与“专家系统”方面,可以将以前的客机飞行数据传入“中国星”内,“中国星”可自主形成“专家数据库”和“学习知识库”,用库中的知识指导自身的自主飞行。另外,在“智能可变机翼”上的压电传感器会自带微型数字处理器(DSP),传感器与传感器之间形成神经网络。神经网络可以感知机翼外界的气流,其作用与鸟的羽毛能够感知空气的机理一致。

  4.5光传操纵系统

  “中国星”运用光传操纵FBL (Fly By Light) 系统对舵面和机翼变形进行控制。光传系统是以光代替电作为传输载体,以光导纤维代替电导线作为物理传输媒质,应用光纤数据传输技术在飞控计算机之间或飞控计算机与远距离终端(如舵机等)之间传递指令和反馈信息的飞行控制系统。

  与电传(FBW)相比,光纤传输技术之所以得到迅速的发展,是由于它具有许多非常独特的优点:

  (1) 频带宽、信息容量大. 目前单模光纤的带宽可达THz·km 量级;

  (2) 传输损耗低、传输距离长. 光纤损耗降至0. 2 dB/km 以下,比电缆小1~2个数量级;

  (3) 抗干扰性强,使用安全. 光纤传输密封性好,有很强的抗电磁干扰性能,不易引起信号串扰,不打火花,耐高温和耐腐蚀,具有很高的可靠性和安全性;

  (4) 体积小、重量轻,便于在狭小的空间敷设;

  (5) 运用波分和时分技术,光传操纵具有灵活的数据总线协议和结构。

  4.5全球定位系统—第三代北斗星导航系统

  “中国星”的导航与定位,将采用中国自行研制开发的全球定位系统--第三代北斗星导航系统。第三代北斗星导航系统性能如下:

  (1)覆盖范围:第三代北斗导航系统能全天候覆盖全球所有区域。能够确保地球上任何地点、任何时间能同时观测到15颗卫星。

  (2)卫星数量和轨道特性:第三代北斗导航系统在地球8个轨道平面上设置50颗卫星,轨道赤道倾角55°,轨道面赤道角距60°。航卫星为准同步轨道,绕地球一周11小时58分。

  (3)定位原理:第三代北斗导航系统利用被动式伪码单向测距三维导航。由用户设备独立解算自己三维定位数据。

  (4)定位精度:第三代北斗导航系统三维定位精度能达到厘米级,授时精度约2ns。

  (5)用户容量:第三代北斗导航系统单向测距系统, 用户设备只要接收导航卫星发出的导航电文即可进行测距定位, 因此第三代北斗导航系统的用户设备容量是无限的。

  (6)生存能力: 第三代北斗导航系统正在利用星际横向数据链技术,使万一主控站被毁后GPS卫星可以独立运行。

  5.客舱布局和舱内设施设计

  “中国星”的客舱分为上下两层,包括有头等舱、商务舱和经济舱三种类型。其中“中国星”上层为头等舱,能容纳200人,内部装饰非常豪华,各种休闲娱乐及办公设备一应俱全。此外,“中国星”上层设有5套总统套房,按5星级标准设计。上层还设有商场,在这里旅客可以买到全世界的无税商品。另外,还包括了一个酒吧和一个健身场所。让乘客在旅途中得到全面放松。

  “中国星”客舱下层为商务舱和经济舱,商务舱共有座位400座,分为10排,每排四十座,共八通道。经济舱也设有400个座位,其布置模式与商务舱相同。商务舱,能够支持无线网络连接,并提供全球免费卫星电话,此外还包括前排位置椅背上的LCD显示器提供的XBOX3和PLAYSTATION5的游戏功能以及最新电影的免费观赏。经济舱不提供无线网络连接和免费卫星电话外其余设施与商务舱一致。

  6.“中国星”超大型可变翼飞翼布局客机设计方案的主要数据

  翼展(高速巡航):86米

  翼展(低速起飞、着陆):125米

  机长:88米

  机高:32米

  空重:360吨

  最大起飞重量:620吨

  安装两台低功耗静音涡扇发动机,单台最大推力:860千牛

  最大载客量:1000

  最大飞行速度:M0.91

  最大巡航速度:M0.88

  最大燃油航程:18000千米

  最大载重航程:14000公里

  实用升限:14千米

  相关专题:第三届飞行器设计大赛

Powered By Google

新浪简介About Sina广告服务联系我们招聘信息网站律师SINA English会员注册产品答疑┊Copyright © 1996-2009 SINA Corporation, All Rights Reserved

新浪公司 版权所有